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Objective. This study investigated whether pretreatment oxidative stress, measured by lipid hydroperoxides (LPH), 4-hydroxy-2-
nonenal (4-HNE), 8-isoprostane (8-ISO), and malondialdehyde (MDA), was associated with improvement in immediate recall
among n-3 PUFA-treated coronary artery disease patients. Methods. This was a secondary analysis of the CAROTID trial
(NCT00981383). Composite immediate recall, measured using the California Verbal Learning Test, Second Edition, and the Brief
Visuospatial Memory Test-Revised, was assessed. LPH, 4-HNE, 8-ISO, MDA, and n-3 PUFA concentrations were analysed from
fasting blood. Patients then received either n-3 PUFA treatment or placebo for 12 weeks, after which composite immediate recall was
reassessed. Linear regression was used to investigate relationships between lipid peroxidation markers and changes in composite
immediate recall in each treatment group. Results. Eighty-five patients (age = 61.1 ± 8.5, 77% male, mean years of education =
15.3 ± 3.4) were included (𝑛 = 46 placebo, 𝑛 = 39 n-3 PUFA). After adjusting for multiple comparisons and potential confounders,
greater baseline concentrations of LPH (𝛽 = 0.45, 𝑝 = .002) and 4-HNE (𝛽 = 0.38, 𝑝 = .005) were associated with greater
improvement in composite immediate recall among n-3 PUFA-treated patients. No other associations were observed. Conclusions.
N-3 PUFA treatment may be more likely to improve immediate recall in patients with greater oxidative stress.

1. Introduction

Patients with coronary artery disease (CAD) more com-
monly demonstrate subtle cognitive deficits [1, 2] and are
at increased risk for dementia relative to those without
CAD [3, 4]. Decline in immediate recall appears to precede
multidomain cognitive decline as both cognitively normal
individuals and patients with mild cognitive impairment

progress toward dementia [5, 6]. Accordingly, deficits in
immediate recall may be important tomonitor and remediate
in patients with CAD.

As no preventative treatments for dementia currently
exist, the potential procognitive effects of omega-3 polyun-
saturated fatty acid (n-3 PUFA) supplementation have been
investigated by a multitude of clinical trials [7, 8], including
a recent trial in CAD patients [9]. Results of those trials
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indicate that although n-3 PUFA treatment is generally inef-
ficacious for improving cognition, immediate recall may be a
treatment-responsive domain [7]. However, immediate recall
response to n-3 PUFA treatment is heterogeneous and this
heterogeneity is likely unrelated to study-level differences [7].
These findings suggest that pathophysiological differences
between patients may be a potential factor in treatment-
response variability.

Oxidative stress is a central component of CAD patho-
physiology [10] and has been associated with both cognitive
deficits and decline [11–13]. N-3 PUFA has demonstrated
antioxidant effects in clinical samples [14, 15], and those
effects have been related to improvements in memory in ani-
mal studies [16]. We hypothesized that n-3 PUFA treatment
efficacy for immediate recall might be greater among patients
with greater oxidative stress prior to treatment.

This study investigated whether baseline concentrations
of the oxidative stress markers lipid hydroperoxides (LPH),
4-hydroxy-2-nonenal (4-HNE), 8-isoprostane (8-ISO), and
malondialdehyde (MDA) were associated with improvement
in immediate recall among n-3 PUFA-treated CAD patients.

2. Methods

This was a secondary analysis of the cognitive outcomes
from the CAD Randomized Omega-3 Trial in Depression
(CAROTID), a 12-week, parallel-arm trial of 1.9 g/day n-3
PUFA treatment (including 1.2 g/day eicosapentaenoic acid
(EPA) and 0.6 g/day docosahexaenoic acid (DHA)) in CAD
patients (NCT00981383) [9]. This study was approved by
the Research Ethics Boards of Sunnybrook Health Sciences
Centre, University Health Network, and Trillium Health
Partners and was conducted according to the principles
expressed in the Declaration of Helsinki.

2.1. Patients. Trial inclusion and exclusion criteria are
detailed elsewhere [9]. Briefly, patients enrolled inCAROTID
were those with evidence of stable CAD (history of myocar-
dial infarction, coronary artery bypass graft, percutaneous
transluminal coronary angioplasty, or at least a 50% stenosis
in one or more major coronary artery), aged 45–80 years,
male or female, and with the ability to speak and understand
English. All eligible patients, with or without depression,
were included. Excluded patients were those with a signif-
icant acute medical illness, clinically significant cognitive
impairment (Standardized Mini-Mental State Examination
score < 24 or a diagnosis of dementia), a neurological
condition, unstable angina, or a contraindication to n-3
PUFA supplement use. Antidepressant use was permitted if
used at a stable dose for at least 3 months prior to the trial.

2.2. Design. Eligible patients were invited to a prerandom-
ization baseline visit, at which, demographic, anthropo-
morphic, medical, and medication information was docu-
mented. Immediate recall performance was assessed using
the immediate recall components of the California Verbal
Learning Test, Second Edition [17], and the Brief Visuospatial
Memory Test-Revised [18]. Raw scores from each test were
adjusted for population norms and the resulting Z-scores

were used in the analysis. Composite immediate recall was
the primary outcome measure and was calculated by the
mean of verbal and visuospatial recall Z-scores for each
patient. Depressive symptom severitywasmeasured using the
17-ItemHamiltonDepression Rating Scale (HAM-D) [19] and
was accounted for as a covariate. Fasting (12 hours overnight)
blood was drawn and processed for analysis of serum lipid
peroxidation markers and plasma n-3 PUFAs, which were a
planned covariate. Patients were then randomized (1 : 1) to
receive either 1.9 g/day n-3 PUFA supplements or placebo
for 12 weeks. Composite immediate recall performance was
reassessed after 12 weeks.

2.3. Analysis of Lipid PeroxidationMarkers and n-3 PUFA. All
samples for each lipid peroxidation marker were analysed in
the same batch to eliminate batch-to-batch variability. LPH
was measured using a colorimetric LPH assay kit with slight
modifications (Cayman Chemical, item number 705002).
LPH radicals were extracted from serum into chloroform and
thenmixedwith the LPHassay kit.This kitmeasured the LPH
radicals directly through redox reactions with ferrous ions,
which were detected using thiocyanate as the chromogen.
Each sample was plated in triplicate and the average serum
LPH concentration for each sample was determined by
converting the resulting absorbance (500 nm) of each sample
in spectrophotometry to 𝜇mol/L using a hydroperoxide
concentration standard. The sensitivity of our technique
is between 0.5 and 45.00 𝜇mol/L of hydroperoxides. The
interassay coefficient of variation was between 0.0% and
17.2%.

4-HNE protein adducts, via Michael addition to lysine,
histidine, or cysteine, were measured using ELISA (STA-
838; Cell Biolabs). 4-HNE in serum was mixed with bovine
serum albumin, incubated overnight, and then mixed with
anti-HNE polyclonal antibody and a horseradish peroxidase
conjugated secondary antibody. Each sample was plated in
triplicate and the average 4-HNE concentration for each sam-
ple was determined by converting the resulting absorbance of
the horseradish peroxidase reaction with a substrate solution
in spectrophotometry (450 nm) to fmol/𝜇g using a protein
standard. The sensitivity of this assay is between 3.9 and
250 fmol/𝜇g of 4-HNE-bovine serumalbumin.The interassay
coefficient of variation was between 0.0% and 25.9%, with
95.3% (81/85) of samples yielding an interassay coefficient of
variation lower than 25.0%.

8-ISO was measured using a standard competitive sand-
wich ELISA (#516351; Cayman Chemical) according to man-
ufacturer’s instructions. Serum 8-ISO was conjugated to
acetylcholinesterase, with the complex then bound to rabbit
IgG mouse monoclonal antibody in the well of the ELISA
plate. Each sample was plated in duplicate and the average
8-ISO concentration for each sample was determined by
converting the resulting absorbance of acetylcholinesterase
reaction with a substrate solution in spectrophotometry
(412 nm) to pg/mL using a protein standard. The sensitivity
of this assay is between 0.8 and 500 pg/mL. The interassay
coefficient of variation was between 0.0% and 28.7%, with
98.8% (84/85) of samples yielding an interassay coefficient of
variation lower than 25.0%.
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Serum MDA concentrations (Cayman; item number
700870) were measured based on the absorbance of thio-
barbituric acid reactive substances in spectrophotometry
(540 nm). MDA-thiobarbituric acid adducts were generated
in acidic and high temperature (90–100∘C) conditions. Each
sample was plated in duplicate and the average MDA con-
centration for each sample was determined by converting
the resulting absorbance to 𝜇mol/L using a thiobarbituric
acid standard. The sensitivity of this assay is between 0
and 50 𝜇mol/L. The interassay coefficient of variation was
between 0.0% and 22.6%.

Plasma concentrations of EPA, DHA, and the n-6 PUFA,
arachidonic acid (AA), were measured by gas chromatogra-
phy as previously described [20]. All analyseswere performed
blinded to treatment allocation and patient characteristics.

2.4. Statistical Analyses. Data missing due to dropout were
imputed using the multiple imputation method [21], and the
resulting dataset was used for the primary analysis. Baseline
concentrations of LPH, 4-HNE, 8-ISO, and MDA were each
assessed as predictors of change in composite immediate
recall Z-scores over 12 weeks in both the n-3 PUFA and
placebo groups using linear regression. Eachmodel consisted
of change in the composite immediate recall Z-score as the
dependent variable, with baseline composite immediate recall
Z-score and the lipid peroxidation marker being studied
as independent variables. Results for each marker in each
treatment group were adjusted for the false discovery rate
[22], and only those remaining significant were investigated
further.

The ratio of baseline EPA and DHA concentrations to
AA concentrations (EPA + DHA/AA) was calculated and
included as a planned covariate given the relationships of
those fatty acidswith cognitive performance [23, 24]. Baseline
HAM-D score was an additional planned covariate as depres-
sive symptomsmay also influence cognitive performance [9].

In post hoc analyses, observed relationships between
baseline lipid peroxidation marker concentrations and
changes in composite immediate recall Z-scores were
assessed in the per-protocol subgroup of patients. Addition-
ally, composite immediate recallZ-scores were deconstructed
into verbal and visuospatial recall Z-scores, and relationships
with lipid peroxidation markers were explored in each
domain.

Statistical models were computed using SPSS statistical
software, version 13.0, Chicago, IL, USA, and all analyses were
two-tailed.

3. Results

As detailed elsewhere [9], 92 patients with CAD were
enrolled in CAROTID. Despite adequate treatment compli-
ance, patients using n-3 PUFA did not demonstrate improve-
ment in immediate recall over 12 weeks relative to those using
placebo. Of those randomized, 85 patients provided baseline
serum lipid peroxidation samples and were included in this
study.

Patients in each treatment group were similar (Table 1)
with respect to age, sex, years of education, cardiovascular

history, medication use, baseline immediate recall perfor-
mance, baseline EPA + DHA/AA ratio, and baseline concen-
trations of the lipid peroxidation markers. Mean depressive
symptom severity was mild and was similar between groups.

Greater baseline concentrations of LPH and 4-HNE
were significantly associated with greater improvement in
composite immediate recall among patients receiving 12
weeks of n-3 PUFA treatment (Table 2, Figure 1), after
correcting for multiple comparisons. Baseline concentrations
of 8-ISO and MDA were not associated with changes in
composite immediate recall in n-3 PUFA-treated patients.
Similarly, there were no associations between baseline LPH,
4-HNE, or 8-ISO and changes in composite immediate recall
among patients using placebo. A significant relationship
between greater baselineMDA concentrations and decline in
composite immediate recall over 12weekswas observed in the
placebo group; however, it did not survive correction for the
false discovery rate.

Greater baseline concentrations of LPH (B (SE) = 0.02
(0.01), 𝛽 = 0.39, 𝑝 = .013), and 4-HNE (B (SE) = 0.01
(0.01), 𝛽 = 0.29, 𝑝 = .047) remained associated with greater
improvement in composite immediate recall over 12 weeks
of n-3 PUFA treatment after adjusting for baseline EPA +
DHA/AA ratios and baseline HAM-D scores as covariates.

3.1. Post Hoc Analyses. In the per-protocol subgroup of
patients treated with n-3 PUFAs (𝑛 = 34), greater baseline
concentrations of LPH (B (SE) = 0.03 (0.01), 𝛽 = 0.47, 𝑝 =
.002) and 4-HNE (B (SE) = 0.01 (0.01), 𝛽 = 0.39, 𝑝 = .013)
remained significantly associated with greater improvement
in composite immediate recall with 12 weeks of n-3 PUFA
treatment.

Deconstructing composite immediate recall into verbal
recall and visuospatial recall revealed that greater baseline
concentrations of LPH (verbal recall: B (SE) = 0.01 (0.01), 𝛽 =
0.18,𝑝 = .31; visuospatial recall: B (SE) = 0.04 (0.01),𝛽= 0.46,
𝑝 = .001) and 4-HNE (verbal recall: B (SE) = 0.01 (0.01), 𝛽 =
0.20,𝑝 = .17; visuospatial recall: B (SE) = 0.02 (0.01),𝛽= 0.34,
𝑝 = .014) were particularly associated with improvement in
visuospatial recall after n-3 PUFA treatment.

4. Discussion

This secondary analysis of cognitive outcomes from the
CAROTID trial found that higher baseline concentrations of
the lipid peroxidation markers LPH and 4-HNE, indicating
greater pretreatment levels of oxidative stress, were associated
with greater improvements in immediate recall in CAD
patients after 12 weeks of n-3 PUFA treatment. The fact that
no such associations were observed among patients using
placebo and that known predictors of cognitive change, such
as age, years of education, and cardiovascular risk factors
[25], were balanced at baseline between the treatment groups
accords with a potential relationship between oxidative stress
and n-3 PUFA treatment efficacy.

To our knowledge, this is the first study to examine the
relationship between baseline markers of oxidative stress and
n-3 PUFA efficacy on memory or other cognitive domains.
However, markers of oxidative stress and inflammation
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Table 1: Baseline participant characteristics.

Variable, mean (SE) Placebo (𝑛 = 46) N-3 PUFA (𝑛 = 39) 𝐹/𝜒2 𝑝 value
Age 59.8 (1.2) 62.6 (1.4) 2.13 .15
Male, % 74 80 0.44 .51
Education, yrs 15.7 (0.5) 14.9 (0.6) 1.17 .28
Cardiovascular history
Event/procedure∗ 0.80 .85

MI, % 39 31
PTCA, % 37 38
CABG, % 22 28

Vascular risk factors, # of 5∗∗ 2.8 (0.2) 3.1 (0.2) 0.89 .35
VO2 peak, % age and sex norm 73% (24%) 73% (20%) 0.03 .86
Medications
Antidiabetic, % 13 26 2.17 .14
Antihypertensive, % 69 82 1.86 .17
Anti-inflammatory, % 4 2 0.22 .64
Platelet inhibitor, % 98 92 1.43 .21
Statin, % 100 98 1.16 .28
Psychometric performance
Composite recall, Z-score 0.23 (0.16) 0.06 (0.16) 0.61 .44
Verbal recall, Z-score 0.37 (0.16) 0.30 (0.16) 0.10 .75
Visuospatial recall, Z-score 0.08 (0.19) −0.19 (0.18) 1.02 .32
HAM-D score 7.6 (0.8) 6.8 (1.1) 0.32 .57
Blood markers
Plasma EPA + DHA/AA ratio 0.34 (0.03) 0.33 (0.02) 0.12 .73
Serum LPH, 𝜇mol/L 18.2 (1.9) 17.7 (2.0) 0.03 .87
Serum 4-HNE, fmol/𝜇g 46.4 (2.2) 44.5 (2.7) 0.27 .60
Serum 8-ISO, pg/mL 0.13 (0.01) 0.11 (0.01) 1.06 .31
SerumMDA, 𝜇mol/L 0.04 (<0.01) 0.04 (<0.01) 0.02 .89
SE, standard error; N-3 PUFA, n-3 polyunsaturated fatty acid; 𝐹, 𝐹-statistic of analysis of variance; 𝜒2, chi-squared test statistic; MI, myocardial infarction;
PTCA, percutaneous transluminal coronary angioplasty; CABG, coronary artery bypass graft; VO2 peak, peak volume of oxygen uptake during cardiac stress
test; HAM-D, Hamilton Depression Rating Scale; EPA, eicosapentaenoic acid; DHA, docosahexaenoic acid; AA, arachidonic acid; LPH, lipid hydroperoxides;
4-HNE, 4-hydroxy-2-nonenal; 8-ISO, 8-isoprostane; MDA, malondialdehyde. ∗Patientsmay have had both an event and one or more procedures. ∗∗Vascular
risk factors: hypertension, obesity (body mass index ≥ 30), dyslipidemia, diabetes mellitus, and smoking.

Table 2: Associations between baseline lipid peroxidation marker concentrations and changes in composite immediate recall Z-scores over
12 weeks by treatment group.

Outcome Placebo (𝑛 = 46) n-3 PUFA (𝑛 = 39)
B (SE) 𝛽 𝑝 value B (SE) 𝛽 𝑝 value

LPH 0.01 (0.01) 0.05 .70 0.25 (0.01) 0.45 .002∗

4-HNE −0.01 (0.01) −0.07 .59 0.14 (0.01) 0.38 .005∗

8-ISO −1.07 (1.26) −0.12 .39 −0.65 (2.00) −0.05 .75
MDA −12.40 (5.18) −0.32 .017 −4.28 (4.70) −0.14 .36
Note. B and 𝛽 are the unstandardized and standardized regression coefficients, respectively. SE is the standard error of the B coefficient. ∗ Indicates that the
result remained statistically significant after adjustment for false discovery rate (first threshold at <.0125, second threshold at <.025; Benjamini & Hochberg).
Significant 𝑝 values are shown to three decimal places for clarity.

have been previously associated with n-3 PUFA treatment
response in other conditions, such as depression [26, 27],
which aligns with our hypothesis that oxidative stress may be
relevant to the success of n-3 PUFA supplementation andmay
underlie its variable efficacy in previous trials [7–9].

Mechanistically, n-3 PUFAs appear to have antioxidant
effects [28]. In particular, EPA and DHA have been shown to

reduce the production of hydroxyl and superoxide radicals, in
turn reducing the production of downstream reactive oxygen
species that can attack lipids and proteins. Such antioxidant
effects have been observed in both animal studies [29–32]
and clinical studies involving patients with mild cognitive
deficits [15]. Furthermore, animal studies have shown that n-
3 PUFA antioxidant effects correlate with improved memory
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Figure 1: Associations of baseline LPH and 4-HNE concentrations
with changes in composite immediate recall Z-scores over 12 weeks
of n-3 PUFA treatment (𝑛 = 39).

performance [16, 33, 34]. It is unclear why LPH and 4-HNE
were the only markers associated with n-3 PUFA treatment
benefits. Preclinical studies have not clearly revealed the
conditions under which LPHmay differentially convert to 4-
HNE, MDA, or 8-ISO in vivo and so we cannot speculate on
the reason for our findings in this clinical sample. However,
all four markers have been linked with memory deficits
[35–38], as well as n-3 PUFA antioxidant effects [29–32] in
animal studies, suggesting the potential for their involvement.
Replication of our study may clarify which markers are most
relevant to n-3 PUFA treatment effects on memory.

4.1. Strengths and Limitations. A strength of this study is
that important predictors of cognitive change such as age,
years of education, and cardiovascular risk factors were
balanced between the treatment groups and were therefore
not required as covariates. As such, we could examine the
relationship between baseline oxidative stress and cognitive
change in each treatment group using a relatively small
sample size. However, the small size precluded examination
of that relationship in a more powerful interaction (oxidative
stress × treatment × time) model combining both treatment

groups. Another strength was our ability to account for
depressive symptoms, which have been previously shown
to influence cognitive performance [9, 39] and are highly
prevalent in the CAD population [40].

A limitation of this study was that the included patients,
despite demonstrating a range of baseline immediate recall
performance, were all cognitively healthy and may therefore
have been limited in their potential for cognitive change.
However, the measures of immediate recall used in this study
both provide a high ceiling for potential scores and none
of the included patients approached the maximum at either
study visit. Moreover, such a limitation would apply equally
to both treatment groups and is unlikely to have confounded
our findings. How baseline oxidative stress may be associated
with cognitive changes among patients with greater cognitive
deficits remains to be investigated. Finally, our findings are
limited to the domain of immediate recall and to the CAD
population. As such, they are not necessarily generalizable
to cognitively healthy individuals without cardiovascular
disease or patients with cognitive deficits secondary to other
vascular diseases or nonvascular causes.

5. Conclusions

After adjusting for multiple comparisons and potential con-
founders, greater baseline concentrations of LPH and 4-HNE
were associated with greater improvement in immediate
recall performance among CAD patients after 12 weeks of n-
3 PUFA treatment. Our finding may clarify the variability in
cognitive response to n-3 PUFA observed in previous trials.
Future research is warranted to assess whether these markers
have clinical utility.
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